Gender Classification of Human Faces
نویسندگان
چکیده
This paper addresses the issue of combining pre-processing methods—dimensionality reduction using Principal Component Analysis (PCA) and Locally Linear Embedding (LLE)—with Support Vector Machine (SVM) classification for a behaviorally important task in humans: gender classification. A processed version of the MPI head database is used as stimulus set. First, summary statistics of the head database are studied. Subsequently the optimal parameters for LLE and the SVM are sought heuristically. These values are then used to compare the original face database with its processed counterpart and to assess the behavior of a SVM with respect to changes in illumination and perspective of the face images. Overall, PCA was superior in classification performance and allowed linear separability.
منابع مشابه
Insights from Machine Learning Applied to Human Visual Classification
We attempt to understand visual classification in humans using both psychophysical and machine learning techniques. Frontal views of human faces were used for a gender classification task. Human subjects classified the faces and their gender judgment, reaction time and confidence rating were recorded. Several hyperplane learning algorithms were used on the same classification task using the Pri...
متن کاملBody Mass Index Classification based on Facial Features using Machine Learning Algorithms for utilizing in Telemedicine
Background and Objectives: Due to the impact of controlling BMI on life, BMI classification based on facial features can be used for developing Telemedicine systems and eliminating the limitations of measuring tools, especially for paralyzed people. So that physicians can help people online during the Covid-19 pandemic. Method: In this study, new features and some previous work features were e...
متن کاملExploring the Magnitude of Human Sexual Dimorphism in 3D Face Gender Classification
Human faces demonstrate clear Sexual Dimorphism (SD) for recognizing the gender. Di↵erent faces, even of the same gender, convey di↵erent magnitude of sexual dimorphism. However, in gender classification, gender has been interpreted discretely as either male or female. The exact magnitude of the sexual dimorphism in each gender is ignored. In this paper, we propose to evaluate the SD magnitude,...
متن کاملA Comparative Study of Gender and Age Classification in Speech Signals
Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...
متن کاملFace Recognition by Cognitive Discriminant Features
Face recognition is still an active pattern analysis topic. Faces have already been treated as objects or textures, but human face recognition system takes a different approach in face recognition. People refer to faces by their most discriminant features. People usually describe faces in sentences like ``She's snub-nosed'' or ``he's got long nose'' or ``he's got round eyes'' and so like. These...
متن کاملNeurophysiological correlates of face gender processing in humans.
Event-related potentials (ERPs) were recorded while subjects were involved in three gender-processing tasks based on human faces and on human hands. In one condition all stimuli were only of one gender, preventing any gender discrimination. In a second condition, faces (or hands) of men and women were intermixed but the gender was irrelevant for the subject's task; hence gender discrimination w...
متن کامل